A multivariate test for detecting fraud based on Benford’s law, with application to music streaming data
Nermina Mumic () and
Peter Filzmoser ()
Additional contact information
Nermina Mumic: TU Wien
Peter Filzmoser: TU Wien
Statistical Methods & Applications, 2021, vol. 30, issue 3, No 4, 819-840
Abstract:
Abstract Benford’s law became a prevalent concept for fraud and anomaly detection. It examines the frequencies of the leading digits of numbers in a collection of data and states that the leading digit is most often 1, with diminishing frequencies up to 9. In this paper we propose a multivariate approach to test whether the observed frequencies follow the theoretical Benford distribution. Our approach is based on the concept of compositional data, which examines the relative information between the frequencies of the leading digits. As a result, we introduce a multivariate test for Benford distribution. In simulation studies and examples we compare the multivariate test performance to the conventional chi-square and Kolmogorov-Smirnov test, where the multivariate test turns out to be more sensitive in many cases. A diagnostics plot based on relative information allows to reveal and interpret the possible deviations from the Benford distribution.
Keywords: Benford’s Law; Compositional data; Fraud detection; Multivariate testing (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10260-021-00582-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:30:y:2021:i:3:d:10.1007_s10260-021-00582-6
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-021-00582-6
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().