EconPapers    
Economics at your fingertips  
 

Estimation and computations for Gaussian mixtures with uniform noise under separation constraints

Pietro Coretto ()
Additional contact information
Pietro Coretto: University of Salerno

Statistical Methods & Applications, 2022, vol. 31, issue 2, No 17, 427-458

Abstract: Abstract In this paper we study a finite Gaussian mixture model with an additional uniform component that has the role to catch points in the tails of the data distribution. An adaptive constraint enforces a certain level of separation between the Gaussian mixture components and the uniform component representing noise and outliers in the tail of the distribution. The latter makes the proposed tool particularly useful for robust estimation and outlier identification. A constrained ML estimator is introduced for which existence and consistency is shown. One of the attractive features of the methodology is that the noise level is estimated from data. We also develop an EM-type algorithm with proven convergence. Based on numerical evidence we show how the methods developed in this paper are useful for several fundamental data analysis tasks: outlier identification, robust location-scale estimation, clustering, and density estimation.

Keywords: Mixture models; Noise component; Robustness; Model-based clustering; EM algorithm; Outlier identification; Density estimation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10260-021-00578-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:31:y:2022:i:2:d:10.1007_s10260-021-00578-2

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2

DOI: 10.1007/s10260-021-00578-2

Access Statistics for this article

Statistical Methods & Applications is currently edited by Tommaso Proietti

More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stmapp:v:31:y:2022:i:2:d:10.1007_s10260-021-00578-2