Student’s-t process with spatial deformation for spatio-temporal data
Fidel Ernesto Castro Morales (),
Dimitris N. Politis (),
Jacek Leskow () and
Marina Silva Paez ()
Additional contact information
Fidel Ernesto Castro Morales: UFRN
Dimitris N. Politis: University of California
Jacek Leskow: Cracow University of Technology
Marina Silva Paez: UFRJ
Statistical Methods & Applications, 2022, vol. 31, issue 5, No 2, 1099-1126
Abstract:
Abstract Many models for environmental data that are observed in time and space have been proposed in the literature. The main objective of these models is usually to make predictions in time and to perform interpolations in space. Realistic predictions and interpolations are obtained when the process and its variability are well represented through a model that takes into consideration its peculiarities. In this paper, we propose a spatio-temporal model to handle observations that come from distributions with heavy tails and for which the assumption of isotropy is not realistic. As a natural choice for a heavy-tailed model, we take a Student’s-t distribution. The Student’s-t distribution, while being symmetric, provides greater flexibility in modeling data with kurtosis and shape different from the Gaussian distribution. We handle anisotropy through a spatial deformation method. Under this approach, the original geographic space of observations gets mapped into a new space where isotropy holds. Our main result is, therefore, an anisotropic model based on the heavy-tailed t distribution. Bayesian approach and the use of MCMC enable us to sample from the posterior distribution of the model parameters. In Sect. 2, we discuss the main properties of the proposed model. In Sect. 3, we present a simulation study, showing its superiority over the traditional isotropic Gaussian model. In Sect. 4, we show the motivation that has led us to propose the t distribution-based anisotropic model—the real dataset of evaporation coming from the Rio Grande do Sul state of Brazil.
Keywords: Student’s-t process; Spatio-temporal modeling; Spatial deformation; Markov Chain Monte Carlo; Heavy tails (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10260-022-00623-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:31:y:2022:i:5:d:10.1007_s10260-022-00623-8
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-022-00623-8
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().