A Bayesian variable selection approach to longitudinal quantile regression
Priya Kedia,
Damitri Kundu and
Kiranmoy Das ()
Additional contact information
Priya Kedia: JP Morgan Chase and Co.
Damitri Kundu: Indian Statistical Institute
Kiranmoy Das: Indian Statistical Institute
Statistical Methods & Applications, 2023, vol. 32, issue 1, No 7, 149-168
Abstract:
Abstract The literature on variable selection for mean regression is quite rich, both in the classical as well as in the Bayesian setting. However, if the goal is to assess the effects of the predictors at different levels of the response variable then quantile regression is useful. In this paper, we develop a Bayesian variable selection method for longitudinal response at some prefixed quantile levels of the response. We consider an Asymmetric Laplace Distribution (ALD) for the longitudinal response, and develop a simple Gibbs sampler algorithm for variable selection at each quantile level. We analyze a dataset from the health and retirement study (HRS) conducted by the University of Michigan for understanding the relationship between the physical health and the financial health of the aged individuals. We consider the out-of-pocket medical expenses as our response variable since it summarizes the physical and the financial well-being of an aged individual. Our proposed approach efficiently selects the important predictors at different prefixed quantile levels. Simulation studies are performed to assess the practical usefulness of the proposed approach. We also compare the performance of the proposed approach to some other existing methods of variable selection in quantile regression.
Keywords: Asymmetric Laplace Distribution; Gibbs sampler; Longitudinal data; Quantile regression; Variable selection (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10260-022-00645-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:32:y:2023:i:1:d:10.1007_s10260-022-00645-2
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-022-00645-2
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().