Generalised calibration with latent variables for the treatment of unit nonresponse in sample surveys
M. Giovanna Ranalli (),
Alina Matei () and
Andrea Neri
Additional contact information
M. Giovanna Ranalli: University of Perugia
Alina Matei: University of Neuchâtel
Statistical Methods & Applications, 2023, vol. 32, issue 1, No 8, 169-195
Abstract:
Abstract Sample surveys may suffer from nonignorable unit nonresponse. This happens when the decision of whether or not to participate in the survey is correlated with variables of interest; in such a case, nonresponse produces biased estimates for parameters related to those variables, even after adjustments that account for auxiliary information. This paper presents a method to deal with nonignorable unit nonresponse that uses generalised calibration and latent variable modelling. Generalised calibration enables to model unit nonresponse using a set of auxiliary variables (instrumental or model variables), that can be different from those used in the calibration constraints (calibration variables). We propose to use latent variables to estimate the probability to participate in the survey and to construct a reweighting system incorporating such latent variables. The proposed methodology is illustrated, its properties discussed and tested on two simulation studies. Finally, it is applied to adjust estimates of the finite population mean wealth from the Italian Survey of Household Income and Wealth.
Keywords: Auxiliary information; Finite population; Latent class models; Latent trait models; Nonignorable nonresponse (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10260-022-00646-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:32:y:2023:i:1:d:10.1007_s10260-022-00646-1
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-022-00646-1
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().