EconPapers    
Economics at your fingertips  
 

A flexible Bayesian variable selection approach for modeling interval data

Shubhajit Sen, Damitri Kundu and Kiranmoy Das ()
Additional contact information
Shubhajit Sen: Indian Statistical Institute
Damitri Kundu: Indian Statistical Institute
Kiranmoy Das: Indian Statistical Institute

Statistical Methods & Applications, 2024, vol. 33, issue 1, No 10, 267-286

Abstract: Abstract Interval datasets are not uncommon in many disciplines including medical experiments, econometric studies, environmental studies etc. For modeling interval data traditionally separate models are used for modeling the center and the radius of the response variable. In this article, we consider a Bayesian regression framework for jointly modeling the center and the radius of the intervals corresponding to the response, and then use appropriate priors for variable selection. Unlike the traditional setting, both the centres and the radii of all the predictors are used for modeling the center and the radius of response. We consider spike and slab priors for the regression coefficients corresponding to the centers (radii) of the predictors while modeling the center (radius) of the response, and global–local shrinkage prior for the coefficients corresponding to the radii (centers) of the predictors. Through extensive simulation studies, we illustrate the effectiveness of our proposed variable selection approach for the analysis and prediction of interval datasets. Finally, we analyze a real dataset from a clinical trial related to the Acute Lymphocytic Leukemia (ALL), and then select the important set of predictors for modeling the lymphocyte count which is an important biomarker for ALL. Our numerical studies show that the proposed approach is efficient, and it provides a powerful statistical inference for handling interval datasets.

Keywords: Global–local shrinkage prior; Interval data; Joint model; MCMC; Spike and slab prior (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10260-023-00727-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:33:y:2024:i:1:d:10.1007_s10260-023-00727-9

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2

DOI: 10.1007/s10260-023-00727-9

Access Statistics for this article

Statistical Methods & Applications is currently edited by Tommaso Proietti

More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:stmapp:v:33:y:2024:i:1:d:10.1007_s10260-023-00727-9