Influence of overhead on LTE downlink performance: a comprehensive model
Amir M. Ahmadzadeh,
Lucas Cuadra (),
Miguel A. Arco-Vega,
J. Antonio Portilla-Figueras and
Sancho Salcedo-Sanz
Additional contact information
Amir M. Ahmadzadeh: University of Alcalá
Lucas Cuadra: University of Alcalá
Miguel A. Arco-Vega: University of Alcalá
J. Antonio Portilla-Figueras: University of Alcalá
Sancho Salcedo-Sanz: University of Alcalá
Telecommunication Systems: Modelling, Analysis, Design and Management, 2018, vol. 67, issue 3, No 9, 485-517
Abstract:
Abstract Overhead resource elements (REs) in Long Term Evolution (LTE) networks are used for some control, signaling and synchronization tasks at both the Physical level and Media Access Control sub-level. Accurately computing all the overhead REs is necessary to achieve an efficient system design, which is difficult because LTE is a complex standard that contains a large number of implementation flexibilities and system configurations. The number of such REs depends on both the system configurations and services demanded. Aiming at exploring the influence of overhead on LTE downlink performance, we first parametrize each system configuration—including parameters corresponding to enhancement techniques such as Adaptive Modulation and Coding and Multi-Antenna Transmissions techniques—and those of the resource allocation mechanisms (which depend on users’ services). Second, using such parametrization, we model all overheads for synchronization, controlling and signaling operations in LTE Physical Downlink Shared/Control Channels. This allows for dynamically computing the useful REs (by subtracting the overhead REs from the total ones), both per Transmission Time Interval (TTI) and per frame (and hence, the corresponding bit rates). Our data rate-based performance model is able to accurately compute: (1) the real, exact system data rate or “throughput” (instead of approximations); and (2) the maximum number of simultaneous multi-service users per TTI that is able to support (called here “capacity”). Aiming at understanding the impact of each overhead mechanism, we have carried out a variety of simulations, including different service provision scenarios, such as multi-user with multi-application. The simulation results prove our starting hypothesis that the influence of overhead on LTE performance should not be neglected. The parametrized and dynamic model quantifies to what extent throughput and capacity are modified by overhead—under a combination of system configurations and services, and may provide these performance metrics, throughput and capacity, as inputs to planning, dimensioning and optimization specialized tools.
Keywords: Long Term Evolution; Overhead; Throughput; Performance model; Capacity (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11235-017-0355-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:67:y:2018:i:3:d:10.1007_s11235-017-0355-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235
DOI: 10.1007/s11235-017-0355-7
Access Statistics for this article
Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan
More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().