Physarum-inspired routing protocol for energy harvesting wireless sensor networks
Wenyi Tang,
Ke Zhang () and
Dingde Jiang ()
Additional contact information
Wenyi Tang: University of Electronic Science and Technology of China
Ke Zhang: University of Electronic Science and Technology of China
Dingde Jiang: University of Electronic Science and Technology of China
Telecommunication Systems: Modelling, Analysis, Design and Management, 2018, vol. 67, issue 4, No 14, 745-762
Abstract:
Abstract In order to resolve the traditional limited lifetime problem, energy harvesting technology has been introduced into wireless sensor network (WSN) in recent years, engendering a new kind of network which is called energy harvesting wireless sensor network (EHWSN). In EHWSNs, besides the traditional issues, such as energy consumption, energy equilibrium, transmission efficiency, etc., there are still new challenges, such as how to utilize harvested energy efficiently and how to make more sensor nodes so as to achieve unlimited lifetime under actual situation. In this paper, inspired by slime mold Physarum polycephalum, a novel bionic routing protocol, abbreviated as EHPRP, is proposed for EHWSNs to address above problems without predicting harvestable energy value. Three distributed routing algorithms with low algorithm complexity are proposed which would prominently reduce the processing delay and conserve energy. Furthermore, the mathematic theoretical analysis is made to prove the stability of EHPRP routing strategy. Finally, simulation results present that, compared with other typical algorithms, EHPRP consumes less energy, always making the whole network obtain an unlimited lifetime, and displaying more uniform network energy distribution under different workload conditions.
Keywords: Physarum polycephalum; Energy harvesting wireless sensor networks; Bionic routing protocol; Energy consumption; Unlimited lifetime (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11235-017-0362-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:67:y:2018:i:4:d:10.1007_s11235-017-0362-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235
DOI: 10.1007/s11235-017-0362-8
Access Statistics for this article
Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan
More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().