Computing over encrypted spatial data generated by IoT
Suresh V. Limkar () and
Rakesh Kumar Jha ()
Additional contact information
Suresh V. Limkar: Shri Mata Vaishno Devi University
Rakesh Kumar Jha: Shri Mata Vaishno Devi University
Telecommunication Systems: Modelling, Analysis, Design and Management, 2019, vol. 70, issue 2, No 4, 193-229
Abstract:
Abstract Proliferation of IoT devices produces the enormous amount of data that need to be stored on clouds. A main focus of this paper is to ensure the secrecy of data, while it is in transit through unsecure communication media from edge devices to cloud and to provide security to the data once it is stored on public cloud. A new techniques based on computing over encrypted data i.e. homomorphic encryption seems to be promising methods. However, most of the previous works supporting computing over encrypted data are neither efficient nor compatible with IoT data and real time spatial data streams because there is a huge difference between normal data and spatial data. In this paper, we proposed a framework for computing over IoT generated encrypted spatial data. In order to provide computation over encrypted data first it needs to be indexed in standard data structure. For indexing encrypted data, we used R tree and its variants. We also proposed a method of most efficient and scalable, parallel construction of R trees and its variants on real time encrypted spatial data. We fired spatial range queries on encrypted spatial data. Specifically, the spatial range query execution time over encrypted spatial data of our proposed scheme is extremely efficient which takes slightly more time as taken by normal spatial range query executed over non-encrypted real time spatial data. Our scheme is not only efficient, but also highly compatible and scalable with IoT generated spatial data. Moreover, we rigorously define the scalability, query performance time, analyze the security of our schemes, and also conduct extensive experiments with a real time spatial dataset to demonstrate the performance of our schemes.
Keywords: Data security; Cloud computing; IoT; Zetta; ADS-B; R tree; MapReduce; Apache Spark; Homomorphic encryption (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11235-018-0479-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:70:y:2019:i:2:d:10.1007_s11235-018-0479-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235
DOI: 10.1007/s11235-018-0479-4
Access Statistics for this article
Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan
More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().