EconPapers    
Economics at your fingertips  
 

An approach to support traffic engineering in IPv6 networks based on IPv6 facilities

Line Y. Becerra Sánchez () and Jhon J. Padilla Aguilar ()
Additional contact information
Line Y. Becerra Sánchez: Universidad Católica de Pereira
Jhon J. Padilla Aguilar: Universidad Pontificia Bolivariana

Telecommunication Systems: Modelling, Analysis, Design and Management, 2019, vol. 72, issue 1, No 2, 27 pages

Abstract: Abstract IPv6 is an Internet protocol with the ability to provide a large number of addresses to allow the connectivity of each existing thing to the global network. It also allows the deployment of many technologies and services of the next generation. One of the major changes that occurred in the IP header with this new version is the addition of the IPv6 flow label field, which was created with the intention of labeling packets that belong to a particular flow to provide an appropriate treatment by routers. However, this field has not been widely exploited yet, and it is being set to zero in almost all IPv6 packets. The main Internet routing problem is that said routing is based on the shortest path algorithm, which leads to the possibility of some paths being congested while others are underused. To solve the congestion problem, many solutions aiming at traffic engineering support have been proposed, but this topic remains an open issue. This paper describes a new solution to support traffic engineering based on the usage of the IPv6 flow label for providing fast packet switching, which we have called PSA-TE6. In this document, we present the PSA-TE6 operation and evaluation regarding the label space reduction, label stacking cost and its minimization. The results show that PSA-TE6 is cheaper compared to the IP/MPLS solution when there is no label stacking, and that PSA-TE6 also outperforms IP/MPLS when the stacking is enabled until achieving a 40% presence of tunnels for encapsulation levels greater than 1.

Keywords: IPv6; Packet switching; IPv6 flow label; Traffic engineering (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11235-018-00543-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:72:y:2019:i:1:d:10.1007_s11235-018-00543-7

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235

DOI: 10.1007/s11235-018-00543-7

Access Statistics for this article

Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan

More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:telsys:v:72:y:2019:i:1:d:10.1007_s11235-018-00543-7