EconPapers    
Economics at your fingertips  
 

An efficient routing protocol for cognitive radio networks of energy-limited devices

Rita Ahmad Abu Diab, Atef Abdrabou () and Nabil Bastaki
Additional contact information
Rita Ahmad Abu Diab: United Arab Emirates University
Atef Abdrabou: United Arab Emirates University
Nabil Bastaki: United Arab Emirates University

Telecommunication Systems: Modelling, Analysis, Design and Management, 2020, vol. 73, issue 4, No 7, 577-594

Abstract: Abstract In the era of Internet-of-things (IoT), the future 5G networks are supposed to provide ubiquitous connectivity, high speed, as well as low latency and energy efficiency at low cost to billions of battery-powered wireless devices. The anticipated tremendous demand for wireless bandwidth in 5G networks calls for efficient usage of the underutilized licensed frequency spectrum that preserves the energy consumption of these energy-limited devices. This is feasible by embracing the cognitive radio concept and making use of its functionalities and capabilities to form 5G-CR incorporation. As a step towards this goal, an efficient routing protocol for cognitive radio (ERCR) networks is proposed in this paper. The proposed protocol is location-based and can fully operate over a single wireless channel using a channel access mechanism that follows the IEEE 802.11 distributed coordination function. It selects the route with the minimum number of forwarding nodes that have sufficient remaining energy. This, in turn, increases the per-node capacity to meet the operational requirements of different IoT applications. Meanwhile, it conserves the limited energy of battery-powered devices. The efficiency of the proposed protocol has been evaluated using extensive network simulator-2 computer simulations for a wide range of performance metrics under different activity levels of licensed users in terms of channel occupancy likelihood and duration. The simulation results reveal that ERCR is capable of providing reliable packet delivery at a low packet transfer latency while saving the energy of the cognitive radio network nodes with a fairly small overhead.

Keywords: Cognitive radio networks; IoT; Routing; Energy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11235-019-00628-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:73:y:2020:i:4:d:10.1007_s11235-019-00628-x

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235

DOI: 10.1007/s11235-019-00628-x

Access Statistics for this article

Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan

More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:telsys:v:73:y:2020:i:4:d:10.1007_s11235-019-00628-x