Impact of channel estimation-and-artificial noise cancellation imperfection on artificial noise-aided energy harvesting overlay networks
Khuong Ho- Van and
Thiem Do-Dac ()
Additional contact information
Khuong Ho- Van: Ho Chi Minh City University of Technology (HCMUT)
Thiem Do-Dac: Ho Chi Minh City University of Technology (HCMUT)
Telecommunication Systems: Modelling, Analysis, Design and Management, 2021, vol. 78, issue 3, No 1, 273-292
Abstract:
Abstract EHONs (Energy Harvesting Overlay Networks) satisfy stringent design requirements such as high energy-and-spectrum utilization efficiencies. However, due to open access nature of these networks, eavesdroppers can emulate cognitive radios to wire-tap legitimate information, inducing information security to become a great concern. In order to protect legitimate information against eavesdroppers, this paper generates artificial noise transmitted simultaneously with legitimate information to interfere eavesdroppers. Nonetheless, artificial noise cannot be perfectly suppressed at legitimate receivers as for its primary purpose of interfering only eavesdroppers. Moreover, channel information used for signal detection is hardly estimated at receivers with absolute accuracy. As such, to quickly evaluate impact of channel estimation-and-artificial noise cancellation imperfection on secrecy performance of secondary/primary communication in ANaEHONs (Artificial Noise-aided EHONs), this paper firstly proposes precise closed-form formulas of primary/secondary SOP (Secrecy Outage Probability). Then, computer simulations are provided to corroborate these formulas. Finally, various results are illustrated to shed insights into secrecy performance of ANaEHON with key system parameters from which optimum parameters are recognized. Notably, secondary/primary communication can be secured at different levels by flexibly adjusting various parameters of the proposed system model.
Keywords: Overlay; Secrecy outage probability; Energy harvesting; Channel estimation imperfection; Artificial noise cancellation (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11235-021-00808-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:78:y:2021:i:3:d:10.1007_s11235-021-00808-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235
DOI: 10.1007/s11235-021-00808-8
Access Statistics for this article
Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan
More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().