EconPapers    
Economics at your fingertips  
 

Energy-aware neuro-fuzzy routing model for WSN based-IoT

S. Jeevanantham () and B. Rebekka ()
Additional contact information
S. Jeevanantham: National Institute of Technology
B. Rebekka: National Institute of Technology

Telecommunication Systems: Modelling, Analysis, Design and Management, 2022, vol. 81, issue 3, No 8, 459 pages

Abstract: Abstract Wireless sensor networks have become a vital part of the Internet of Things (IoT) applications. Due to its resource constraints nature, significant challenges in achieving QoS requirements include optimal energy utilization, enhanced lifespan, minimum delay, adequate packet delivery ratio, etc. Many optimizations and routing methods to solve these issues have been discussed in recent literature. However, they have limitations when dealing with high-dimensional data with complex latent distributions. Thus, In this article, we propose an energy-aware neuro-fuzzy routing model (EANFR) that deals with the high-energy sensor nodes to form the clusters and make routing decisions in a feature space generated by a deep neural network to solve the problem. The trained EANFR model can select appropriate cluster head nodes and routes over the most energized, shortest path. A systematic and comprehensive simulation was carried out, and the statistical analysis results show that the proposed EANFR model acquired the lowest training errors. Furthermore, the EANFR outperforms recent literature in terms of network lifetime, particularly on energy-aware clustering using neuro-fuzzy approach by 89.23%, Adaptive Q Learning by 67.21%, and Radial Basis Fuzzy Neural Network Type 2 Fuzzy Weights by 20.63%. According to this research study, the proposed EANFR model significantly improves the network lifespan and QoS performances of WSN making it suitable for IoT monitoring applications.

Keywords: WSN; IoT; Energy optimization; Neural network; FCM; ANFIS (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11235-022-00955-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:81:y:2022:i:3:d:10.1007_s11235-022-00955-6

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235

DOI: 10.1007/s11235-022-00955-6

Access Statistics for this article

Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan

More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:telsys:v:81:y:2022:i:3:d:10.1007_s11235-022-00955-6