Coverage analysis and deployment design of RIS-assisted systems
Ying Wang (),
Angran Liu,
Yiyang Ni and
Jie Zhao
Additional contact information
Ying Wang: Jiangsu Second Normal University
Angran Liu: Jiangsu Second Normal University
Yiyang Ni: Jiangsu Second Normal University
Jie Zhao: Jiangsu Second Normal University
Telecommunication Systems: Modelling, Analysis, Design and Management, 2024, vol. 86, issue 1, No 3, 39-50
Abstract:
Abstract Reconfigurable intelligent surface (RIS) is a novel technology that can help enhance the wireless propagation environment by altering the electromagnetic properties of its massive low-cost passive reflecting elements. This paper aims to explore the mechanism of how the deployment of RIS influences cell coverage from the system level and to obtain valuable guidance for actual RIS deployment design. We derive the coverage area gain (CAG) brought by deploying RIS to the whole system and analyze how the deployment parameters influence performance. The results reveal that it is more favorable to deploy the RIS close to the base station (BS) to gain more long-range coverage, and the coverage area gain can keep approximately constant as long as the ratio of the RIS element number to the deployment distance (between the BS and the RIS) remains unchanged. The scaling law between the CAG and the ratio is obtained. Furthermore, we extend the analysis to the scenario with two RISs deployed and respectively derive the coverage area gains brought by the two RISs when they are symmetrically and vertically deployed. We find that the aforementioned ratio rule still holds here, and the vertical deployment can achieve higher CAG than the symmetric deployment.
Keywords: Reconfigurable intelligent surface; Coverage area gain; Deployment scheme; Symmetrical deployment; Vertical deployment (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11235-024-01107-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:telsys:v:86:y:2024:i:1:d:10.1007_s11235-024-01107-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/11235
DOI: 10.1007/s11235-024-01107-8
Access Statistics for this article
Telecommunication Systems: Modelling, Analysis, Design and Management is currently edited by Muhammad Khan
More articles in Telecommunication Systems: Modelling, Analysis, Design and Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().