An informative subset-based estimator for censored quantile regression
Yanlin Tang,
Huixia Wang,
Xuming He and
Zhongyi Zhu ()
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 2012, vol. 21, issue 4, 635-655
Abstract:
Quantile regression in the presence of fixed censoring has been studied extensively in the literature. However, existing methods either suffer from computational instability or require complex procedures involving trimming and smoothing, which complicates the asymptotic theory of the resulting estimators. In this paper, we propose a simple estimator that is obtained by applying standard quantile regression to observations in an informative subset. The proposed method is computationally convenient and conceptually transparent. We demonstrate that the proposed estimator achieves the same asymptotical efficiency as the Powell’s estimator, as long as the conditional censoring probability can be estimated consistently at a nonparametric rate and the estimated function satisfies some smoothness conditions. A simulation study suggests that the proposed estimator has stable and competitive performance relative to more elaborate competitors. Copyright Sociedad de Estadística e Investigación Operativa 2012
Keywords: Asymptotic efficiency; Censoring probability; Fixed censoring; Informative subset; Nonparametric; Quantile regression; 62G05; 62G20; 62N02 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11749-011-0266-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:testjl:v:21:y:2012:i:4:p:635-655
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11749/PS2
DOI: 10.1007/s11749-011-0266-y
Access Statistics for this article
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Alfonso Gordaliza and Ana F. Militino
More articles in TEST: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().