Penalized likelihood ratio tests for repeated measurement models
Christian Ritz ()
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 2013, vol. 22, issue 3, 534-547
Abstract:
In this paper, we propose a novel test procedure for repeated measurements based on the penalized likelihood ratio (PLR). The procedure provides an alternative to the standard likelihood ratio tests for evaluating null hypotheses concerning the correlation structure of repeated measurements. PLR tests are specifically designed for nonstandard test situations where non-identifiability of a nuisance parameter occurs under the null hypothesis. The idea is to penalize the estimation close to the boundary of the domain of the nuisance parameter and thereby eliminate the non-identifiability. We show that the asymptotic distribution of the PLR test is a 50:50 mixture of chi-square distributions with 0 and 1 degrees of freedom. Simulation studies indicate that the asymptotic distribution of the PLR test provides a good approximation, even for fairly small data sets (10–20 subjects). A sensitivity analysis with a real data example highlights the strengths and weaknesses of the test procedure. Copyright Sociedad de Estadística e Investigación Operativa 2013
Keywords: Autoregressive covariance structure; Locally most powerful test; Mixtures of χ 2 distributions; Nonstandard regularity conditions; 62E20; 62H15 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s11749-013-0324-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:testjl:v:22:y:2013:i:3:p:534-547
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11749/PS2
DOI: 10.1007/s11749-013-0324-8
Access Statistics for this article
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Alfonso Gordaliza and Ana F. Militino
More articles in TEST: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().