EconPapers    
Economics at your fingertips  
 

A direct approach to risk approximation for vast portfolios under gross-exposure constraint using high-frequency data

Xin-Bing Kong ()

TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 2013, vol. 22, issue 4, 647-669

Abstract: It is well known that the traditional estimated risk for the Markowitz mean-variance optimization had been demonstrated to seriously depart from its theoretic optimal risk due to accumulation of input estimation errors. Fan et al. (in J. Am. Stat. Assoc. 107:592–606, 2012a ) addressed the problem by introducing the gross-exposure constrained mean-variance portfolio selection. In this paper, we present a direct approach to estimate the risk for vast portfolios using asynchronous and noisy high-frequency data. This approach alleviates accumulation of the estimation error of tens of hundreds of integrated volatilities (or co-volatilities), and on the other hand it has the advantage of smoothing away the microstructure noise in the spatial direction. Based on the simple approach, together with the “pre-averaging” technique, we obtain a sharper bound of the risk approximation error than that in Fan et al. (in J. Am. Stat. Assoc. 107:412–428, 2012b ). This bound is locally dependent on the allocation plan satisfying the gross-exposure constraint. The bound does not require exponential tail of the distribution of the microstructure noise. Finite fourth moment suffices. Our work also demonstrates that the mean squared error of the risk estimator can be decreased by choosing an optimal tuning parameter depending on the allocation plan. This is more pronounced for the moderately high-frequency data. Our theoretical results are further confirmed by simulations. Copyright Sociedad de Estadística e Investigación Operativa 2013

Keywords: Itô process; Vast portfolio; Gross-exposure constraint; 62F12; 62M05; 60H10; 60J60 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s11749-013-0337-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:testjl:v:22:y:2013:i:4:p:647-669

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11749/PS2

DOI: 10.1007/s11749-013-0337-3

Access Statistics for this article

TEST: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Alfonso Gordaliza and Ana F. Militino

More articles in TEST: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:testjl:v:22:y:2013:i:4:p:647-669