Handling non-ignorable dropouts in longitudinal data: a conditional model based on a latent Markov heterogeneity structure
Antonello Maruotti ()
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 2015, vol. 24, issue 1, 84-109
Abstract:
We illustrate a class of conditional models for the analysis of longitudinal data suffering attrition in random effects models framework, where the subject-specific random effects are assumed to be discrete and to follow a time-dependent latent process. The latent process accounts for unobserved heterogeneity and correlation between individuals in a dynamic fashion, and for dependence between the observed process and the missing data mechanism. Of particular interest is the case where the missing mechanism is non-ignorable. To deal with the topic we introduce a conditional to dropout model. A shape change in the random effects distribution is considered by directly modeling the effect of the missing data process on the evolution of the latent structure. To estimate the resulting model, we rely on the conditional maximum likelihood approach and for this aim we outline an EM algorithm. The proposal is illustrated via simulations and then applied on a dataset concerning skin cancers. Comparisons with other well-established methods are provided as well. Copyright Sociedad de Estadística e Investigación Operativa 2015
Keywords: Hidden Markov chains; Conditional maximum likelihood; Non-ignorable missingness; Longitudinal data; Skin cancer; Primary 62J12; 60J20; Secondary 62P10 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11749-014-0397-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:testjl:v:24:y:2015:i:1:p:84-109
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11749/PS2
DOI: 10.1007/s11749-014-0397-z
Access Statistics for this article
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Alfonso Gordaliza and Ana F. Militino
More articles in TEST: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().