Comments on: High-dimensional simultaneous inference with the bootstrap
Richard A. Lockhart () and
Richard J. Samworth ()
Additional contact information
Richard A. Lockhart: Simon Fraser University
Richard J. Samworth: University of Cambridge
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 2017, vol. 26, issue 4, No 5, 734-739
Abstract:
Abstract We congratulate the authors on their stimulating contribution to the burgeoning high-dimensional inference literature. The bootstrap offers such an attractive methodology in these settings, but it is well-known that its naive application in the context of shrinkage/superefficiency is fraught with danger (e.g. Samworth in Biometrika 90:985–990, 2003; Chatterjee and Lahiri in J Am Stat Assoc 106:608–625, 2011). The authors show how these perils can be elegantly sidestepped by working with de-biased, or de-sparsified, versions of estimators. In this discussion, we consider alternative approaches to individual and simultaneous inference in high-dimensional linear models, and retain the notation of the paper.
Keywords: Confidence intervals; De-biased estimator; High-dimensional inference; 62E20 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11749-017-0555-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:testjl:v:26:y:2017:i:4:d:10.1007_s11749-017-0555-1
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11749/PS2
DOI: 10.1007/s11749-017-0555-1
Access Statistics for this article
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Alfonso Gordaliza and Ana F. Militino
More articles in TEST: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().