Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values
Wan-Lun Wang ()
Additional contact information
Wan-Lun Wang: Feng Chia University
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 2019, vol. 28, issue 1, No 12, 196-222
Abstract:
Abstract The multivariate t nonlinear mixed-effects model (MtNLMM) has been shown to be effective for analyzing multi-outcome longitudinal data following nonlinear growth patterns with fat-tailed noises or potential outliers. This paper considers the problem of clustering heterogeneous longitudinal profiles in a mixture framework of MtNLMM. A finite mixture of multivariate t nonlinear mixed model is proposed, and this new model allows accommodating more complex features of longitudinal data. Intermittent missing values frequently occur in the data collection process of multiple repeated measures. Under a missing at random mechanism, a pseudo-data version of the alternating expectation-conditional maximization algorithm is developed to carry out maximum likelihood estimation and impute missing values simultaneously. The techniques for clustering of incomplete multiple trajectories, recovery of missing responses, and allocation of future subjects are also investigated. The practical utility is demonstrated through a real data example coming from a study of 124 normal and 37 abnormal pregnant women. Simulation studies are provided to validate the proposed approach.
Keywords: Discriminant procedure; Finite mixture models; Heterogeneous behavior; Multiple nonlinear profiles; Multivariate t distribution; 62J02; 62H30 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11749-018-0612-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:testjl:v:28:y:2019:i:1:d:10.1007_s11749-018-0612-4
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11749/PS2
DOI: 10.1007/s11749-018-0612-4
Access Statistics for this article
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Alfonso Gordaliza and Ana F. Militino
More articles in TEST: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().