EconPapers    
Economics at your fingertips  
 

On active learning methods for manifold data

Hang Li (), Enrique Castillo () and George Runger ()
Additional contact information
Hang Li: The Pennsylvania State University
Enrique Castillo: The Pennsylvania State University
George Runger: Arizona State University

TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 2020, vol. 29, issue 1, No 1, 33 pages

Abstract: Abstract Active learning is a major area of interest within the field of machine learning, especially when the labeled instances are very difficult, time-consuming or expensive to obtain. In this paper, we review various active learning methods for manifold data, where the intrinsic manifold structure of data is also incorporated into the active learning query strategies. In addition, we present a new manifold-based active learning algorithm for Gaussian process classification. This new method uses a data-dependent kernel derived from a semi-supervised model that considers both labeled and unlabeled data. The method performs a regularization on the smoothness of the fitted function with respect to both the ambient space and the manifold where the data lie. The regularization parameter is treated as an additional kernel (covariance) parameter and estimated from the data, permitting adaptation of the kernel to the given dataset manifold geometry. Comparisons with other AL methods for manifold data show faster learning performance in our empirical experiments. MATLAB code that reproduces all examples is provided as supplementary materials.

Keywords: Active learning; Gaussian process; Classification; Optimal design; 62 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11749-019-00694-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:testjl:v:29:y:2020:i:1:d:10.1007_s11749-019-00694-y

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11749/PS2

DOI: 10.1007/s11749-019-00694-y

Access Statistics for this article

TEST: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Alfonso Gordaliza and Ana F. Militino

More articles in TEST: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:testjl:v:29:y:2020:i:1:d:10.1007_s11749-019-00694-y