Accounting for dependent informative sampling in model-based finite population inference
Isabel Molina () and
Malay Ghosh ()
Additional contact information
Isabel Molina: Universidad Carlos III de Madrid
Malay Ghosh: University of Florida
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 2021, vol. 30, issue 1, No 11, 179-197
Abstract:
Abstract The paper considers model-based inference for finite population parameters under informative sampling, when the draws of the different units are not independent and the joint selection probability is modeled using a copula. We extend the “sample likelihood” approach to the case of dependent draws and provide the expression of the likelihood given the selected sample, called here “selection likelihood”. We show how to derive maximum likelihood estimators of the model parameters based on the resulting selection likelihood. Further, we find optimal predictors of individual values and of finite population parameters under the proposed informative selection models. In an experiment based on the 1988 U.S. National Maternal and Infant Health Survey, results indicate that, for small sample size, the proposed selection likelihood method reduces systematically the bias and standard errors of the estimators obtained from the sample likelihood based on independent draws and become the same for large sample size. It reduces considerably the bias due to informativeness and gives more efficient estimators than the pseudo likelihood (or quasi-likelihood) approach based on weighting the sample estimating equations by the survey weights.
Keywords: Copulas; EM method; Maximum likelihood; Sample likelihood; Sample selection bias; 62D05; 62E99; 62G09 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11749-020-00708-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:testjl:v:30:y:2021:i:1:d:10.1007_s11749-020-00708-0
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11749/PS2
DOI: 10.1007/s11749-020-00708-0
Access Statistics for this article
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Alfonso Gordaliza and Ana F. Militino
More articles in TEST: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().