Where to find needles in a haystack?
Zhigen Zhao ()
Additional contact information
Zhigen Zhao: Temple University
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 2022, vol. 31, issue 1, No 7, 148-174
Abstract:
Abstract In many existing methods of multiple comparison, one starts with either Fisher’s p value or the local fdr. One commonly used p value, defined as the tail probability exceeding the observed test statistic under the null distribution, fails to use information from the distribution under the alternative hypothesis. The targeted region of signals could be wrong when the likelihood ratio is not monotone. The oracle local fdr based approaches could be optimal because they use the probability density functions of the test statistic under both the null and alternative hypotheses. However, the data-driven version could be problematic because of the difficulty and challenge of probability density function estimation. In this paper, we propose a new method, Cdf and Local fdr Assisted multiple Testing method (CLAT), which is optimal for cases when the p value based methods are optimal and for some other cases when p value based methods are not. Additionally, CLAT only relies on the empirical distribution function which quickly converges to the oracle one. Both the simulations and real data analysis demonstrate the superior performance of the CLAT method. Furthermore, the computation is instantaneous based on a novel algorithm and is scalable to large data sets.
Keywords: Neyman-Pearson lemma; Monotone likelihood ratio; Convergence rate; 62H15 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11749-021-00775-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:testjl:v:31:y:2022:i:1:d:10.1007_s11749-021-00775-x
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11749/PS2
DOI: 10.1007/s11749-021-00775-x
Access Statistics for this article
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Alfonso Gordaliza and Ana F. Militino
More articles in TEST: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().