Sharp inequalities of Bienaymé–Chebyshev and Gauß type for possibly asymmetric intervals around the mean
Roxana A. Ion (),
Chris A. J. Klaassen () and
Edwin R. van den Heuvel ()
Additional contact information
Roxana A. Ion: ASML Veldhoven
Chris A. J. Klaassen: University of Amsterdam
Edwin R. van den Heuvel: Eindhoven University of Technology
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 2023, vol. 32, issue 2, No 9, 566-601
Abstract:
Abstract Sharp upper bounds are proved for the probability that a standardized random variable takes on a value outside a possibly asymmetric interval around 0. Six classes of distributions for the random variable are considered, namely the general class of ‘distributions’, the class of ‘symmetric distributions’, of ‘concave distributions’, of ‘unimodal distributions’, of ‘unimodal distributions with coinciding mode and mean’, and of ‘symmetric unimodal distributions’. In this way, results by Gauß (Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores 5:1–58, 1823), Bienaymé (C R Hebd Séance Acad Sci Paris 37:309–24, 1853), Bienaymé (C R Hebd Séance Acad Sci Paris 37:309–24, 1853), Chebyshev (Journal de mathématiques pures et appliqués (2) 12:177–184, 1867), and Cantelli (Atti del Congresso Internazionale dei Matematici 6:47–59, 1928) are generalized. For some of the known inequalities, such as the Gauß inequality, an alternative proof is given.
Keywords: Cantelli’s inequality; Khintchine representation; Jensen inequality; 60E15; 60E05; 62E99; 62G99; 62P30 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11749-022-00844-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:testjl:v:32:y:2023:i:2:d:10.1007_s11749-022-00844-9
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11749/PS2
DOI: 10.1007/s11749-022-00844-9
Access Statistics for this article
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Alfonso Gordaliza and Ana F. Militino
More articles in TEST: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().