Aspects of robust canonical correlation analysis, principal components and association
Jorge G. Adrover () and
Stella M. Donato ()
Additional contact information
Jorge G. Adrover: FAMAF, Universidad Nacional de Córdoba, CIEM and CONICET
Stella M. Donato: Universidad Nacional de Cuyo
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 2023, vol. 32, issue 2, No 11, 623-650
Abstract:
Abstract Principal component analysis (PCA) and canonical correlation analysis (CCA) are dimension-reduction techniques in which either a random vector is well approximated in a lower dimensional subspace or two random vectors from high dimensional spaces are reduced to a new pair of low dimensional vectors after applying linear transformations to each of them. In both techniques, the closeness between the higher dimensional vector and the lower representations is under concern, measuring the closeness through a robust function. Robust SM-estimation has been treated in the context of PCA and CCA showing an outstanding performance under casewise contamination, which encourages the study of asymptotic properties. We analyze consistency and asymptotic normality for the SM-canonical vectors. As a by-product of the CCA derivations, the asymptotics for PCA can also be obtained. A classical measure of robustness as the influence function is analyzed, showing the usual performance of S-estimation in different statistical models. The general ideas behind SM-estimation in either PCA or CCA are specially tailored to the context of association, rendering robust measures of association between random variables. By these means, a robust correlation measure is derived and the connection with the association measure provided by S-estimation for bivariate scatter is analyzed. On the other hand, we also propose a second robust correlation measure which is reminiscent of depth-based procedures.
Keywords: Canonical correlation analysis; S-estimation; M-scales; Robust association; 62H20; 62H25; 62F35 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11749-023-00846-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:testjl:v:32:y:2023:i:2:d:10.1007_s11749-023-00846-1
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11749/PS2
DOI: 10.1007/s11749-023-00846-1
Access Statistics for this article
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Alfonso Gordaliza and Ana F. Militino
More articles in TEST: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().