Global debiased DC estimations for biased estimators via pro forma regression
Lu Lin and
Feng Li ()
Additional contact information
Lu Lin: Shandong University
Feng Li: Zhengzhou University
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 2023, vol. 32, issue 2, No 15, 726-758
Abstract:
Abstract We establish a global unbiased divide-and-conquer estimation (gub-DC) in linear model and a global bias reduced DC estimation (gbr-DC) in nonlinear model under the case of memory constraint. To introduce the new strategy in linear model, we first provide a new insight into the statistical structure through the closed representation of the local biased estimator and then construct a pro forma linear regression with the local estimator as “response variable” and the parameter of interest as “intercept.” Based on such a regression structure, we composite a global unbiased estimator as the least squares estimator of the intercept. Generally, the gub-DC method can be applied to various biased estimations such as Ridge estimator, principal component estimator and Stein estimator in linear model. Moreover, the method can be extended into nonlinear model to construct a global bias reduced estimator. The main advantage over the classical DC methods is that the new proposed procedures can absorb the information hidden in the statistical structure, and the resulting global estimators are strictly unbiased or can achieve root-n consistency, without any constraint on the number of batches. Another attractive feature refers to the computational simplicity and efficiency. Detailed simulation studies demonstrate that the new estimators are significantly bias-corrected, and their behaviors are comparable with the entire data estimation and are better or at least not worse than the competitors.
Keywords: Divide-and-conquer; Memory constraint; Debiased estimation; Composition; 62F12; 62J07; 62J02 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11749-023-00850-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:testjl:v:32:y:2023:i:2:d:10.1007_s11749-023-00850-5
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11749/PS2
DOI: 10.1007/s11749-023-00850-5
Access Statistics for this article
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Alfonso Gordaliza and Ana F. Militino
More articles in TEST: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().