Robust penalized estimators for high-dimensional generalized linear models
Marina Valdora () and
Claudio Agostinelli ()
Additional contact information
Marina Valdora: University of Buenos Aires
Claudio Agostinelli: University of Trento
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 2025, vol. 34, issue 3, No 8, 742-785
Abstract:
Abstract Robust estimators for generalized linear models (GLMs) are not easy to develop due to the nature of the distributions involved. Recently, there has been growing interest in robust estimation methods, particularly in contexts involving a potentially large number of explanatory variables. Transformed M-estimators (MT-estimators) provide a natural extension of M-estimation techniques to the GLM framework, offering robust methodologies. We propose a penalized variant of MT-estimators to address high-dimensional data scenarios. Under suitable assumptions, we demonstrate the consistency and asymptotic normality of this novel class of estimators. Our theoretical development focuses on redescending $$\rho $$ ρ -functions and penalization functions that satisfy specific regularity conditions. We present an Iterative re-weighted least-squares algorithm, together with a deterministic initialization procedure, which is crucial since the estimating equations may have multiple solutions. We evaluate the finite-sample performance of this method for Poisson distribution and well-known penalization functions through Monte Carlo simulations that consider various types of contamination, as well as an empirical application using a real dataset.
Keywords: GLMs; High-dimensional data; MT-estimators; Penalized methods; Robustness.; 62F35; 62J12; 62J07 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11749-025-00978-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:testjl:v:34:y:2025:i:3:d:10.1007_s11749-025-00978-6
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11749/PS2
DOI: 10.1007/s11749-025-00978-6
Access Statistics for this article
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Alfonso Gordaliza and Ana F. Militino
More articles in TEST: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().