Error minimization methods in biproportional apportionment
Federica Ricca (),
Andrea Scozzari (),
Paolo Serafini () and
Bruno Simeone
TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 2012, vol. 20, issue 3, 547-577
Abstract:
One of the most active research lines in the area of electoral systems to date deals with the Biproportional Apportionment Problem, which arises in those proportional systems where seats must be allocated to parties within territorial constituencies. A matrix of the vote counts of the parties within the constituencies is given, and one has to convert the vote matrix into an integer matrix of seats “as proportional as possible” to it, subject to the constraints that each constituency be granted its pre-specified number of seats, each party be allotted the total number of seats it is entitled to on the basis of its national vote count, and a zero-vote zero-seat condition be satisfied. The matrix of seats must simultaneously meet the integrality and the proportionality requirement, and this not infrequently gives rise to self-contradictory procedures in the electoral laws of some countries. Here we discuss a class of methods for Biproportional Apportionment characterized by an “error minimization” approach. If the integrality requirement is relaxed, fractional seat allocations (target shares) can be obtained so as to achieve proportionality at least in theory. In order to restore integrality, one then looks for integral apportionments that are as close as possible to the ideal ones in a suitable metric. This leads to the formulation of constrained optimization problems called “best approximation problems” which are solvable in polynomial time through the use of network flow techniques. These error minimization methods can be viewed as an alternative to the classical axiomatic approach introduced by Balinski and Demange (in Math Oper Res 14:700–719, 1989a ; Math Program 45:193–210, 1989b ). We provide an empirical comparison between these two approaches with a real example from the Italian Elections and a theoretical discussion about the axioms that are not necessarily satisfied by the error minimization methods. Copyright Sociedad de Estadística e Investigación Operativa 2012
Keywords: Biproportional apportionment; Error minimization; Metric spaces; Network flows; 90C90; 91B12 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11750-012-0252-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:topjnl:v:20:y:2012:i:3:p:547-577
Ordering information: This journal article can be ordered from
http://link.springer.de/orders.htm
DOI: 10.1007/s11750-012-0252-x
Access Statistics for this article
TOP: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Juan José Salazar González and Gustavo Bergantiños
More articles in TOP: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().