Data-driven tuning for chance constrained optimization: analysis and extensions
Ashley M. Hou () and
Line A. Roald ()
Additional contact information
Ashley M. Hou: University of Wisconsin-Madison Engineering Dr
Line A. Roald: University of Wisconsin-Madison Engineering Dr
TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 2022, vol. 30, issue 3, No 9, 649-682
Abstract:
Abstract Many optimization problems involve uncertain parameters which, if not appropriately accounted for, can cause solution infeasiblity. In this work, we consider joint chance-constrained optimization problems, which require all constraints to hold with a given probability, and a two-step solution method based on iterative tuning. Previous work established an a priori feasibility guarantee for this tuning approach, which relies on an assumption that must be verified on a case-by-case basis. In this paper, we propose an empirical methodology using statistical hypothesis testing to assess the validity of this assumption, thus providing further insight into the validity of the a priori guarantee. In addition, we provide sample complexity results to assess the requisite amount of data for the tuning method. We find that for large scale optimization problems, the tuning approach may require significantly less samples than the scenario approach. We numerically assess these results via application to the optimal power flow problem as well as further assess the scalability of the method and the optimality and feasibility of solutions obtained from tuning.
Keywords: Chance-constrained optimization; Optimal power flow; 90C15; 90C90 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11750-022-00639-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:topjnl:v:30:y:2022:i:3:d:10.1007_s11750-022-00639-z
Ordering information: This journal article can be ordered from
http://link.springer.de/orders.htm
DOI: 10.1007/s11750-022-00639-z
Access Statistics for this article
TOP: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Juan José Salazar González and Gustavo Bergantiños
More articles in TOP: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().