EconPapers    
Economics at your fingertips  
 

Learning-assisted optimization for transmission switching

Salvador Pineda (), Juan Miguel Morales () and Asunción Jiménez-Cordero ()
Additional contact information
Salvador Pineda: University of Málaga
Juan Miguel Morales: University of Málaga
Asunción Jiménez-Cordero: University of Málaga

TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 2024, vol. 32, issue 3, No 6, 489-516

Abstract: Abstract The design of new strategies that exploit methods from machine learning to facilitate the resolution of challenging and large-scale mathematical optimization problems has recently become an avenue of prolific and promising research. In this paper, we propose a novel learning procedure to assist in the solution of a well-known computationally difficult optimization problem in power systems: The Direct Current Optimal Transmission Switching (DC-OTS) problem. The DC-OTS problem consists in finding the configuration of the power network that results in the cheapest dispatch of the power generating units. With the increasing variability in the operating conditions of power grids, the DC-OTS problem has lately sparked renewed interest, because operational strategies that include topological network changes have proved to be effective and efficient in helping maintain the balance between generation and demand. The DC-OTS problem includes a set of binaries that determine the on/off status of the switchable transmission lines. Therefore, it takes the form of a mixed-integer program, which is NP-hard in general. In this paper, we propose an approach to tackle the DC-OTS problem that leverages known solutions to past instances of the problem to speed up the mixed-integer optimization of a new unseen model. Although our approach does not offer optimality guarantees, a series of numerical experiments run on a real-life power system dataset show that it features a very high success rate in identifying the optimal grid topology (especially when compared to alternative competing heuristics), while rendering remarkable speed-up factors.

Keywords: Machine learning; Mathematical optimization; Mixed-integer programming; Optimal transmission switching; Optimal power flow (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11750-024-00672-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:topjnl:v:32:y:2024:i:3:d:10.1007_s11750-024-00672-0

Ordering information: This journal article can be ordered from
http://link.springer.de/orders.htm

DOI: 10.1007/s11750-024-00672-0

Access Statistics for this article

TOP: An Official Journal of the Spanish Society of Statistics and Operations Research is currently edited by Juan José Salazar González and Gustavo Bergantiños

More articles in TOP: An Official Journal of the Spanish Society of Statistics and Operations Research from Springer, Sociedad de Estadística e Investigación Operativa
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:topjnl:v:32:y:2024:i:3:d:10.1007_s11750-024-00672-0