Towards a Risk-Based Continuous Auditing-Based Certification for Machine Learning
Dorian Knoblauch () and
Jürgen Großmann ()
Additional contact information
Dorian Knoblauch: Fraunhofer Fokus
Jürgen Großmann: Fraunhofer Fokus
The Review of Socionetwork Strategies, 2023, vol. 17, issue 2, 255-273
Abstract:
Abstract Machine learning systems have gained widespread adoption across various industries. This includes highly regulated ones that need to match certain quality requirements based on a given risk exposure. The MLOps paradigm, following a similar approach to DevOps, promises major improvements in quality and speed, with a focus on deploying ML models at a fast pace with high quality on an automated basis. However, traditional point-in-time certifications with manual audits are inadequate for MLOps setups due to frequent changes to the ML system. To overcome this challenge, we propose Continuous Audit-Based Certification (CABC), which uses automated audits to issue or revoke certificates based on an automated assessment of artifacts from the MLOps lifecycle. Our approach utilizes artifacts from the MLOps lifecycle for quality measurements based on standards such as ISO 25012. We propose a risk-based measurement selection, an audit API for standardized retrieval of data for measurement, a tamper-proof data collection process, and an architecture for separation of duties in the certification process. CABC aims to improve efficiency, enhance trust in the ML system, and support highly regulated industries in achieving their quality goals.
Keywords: MLOps; Machine learning quality dimensions; Certification (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12626-023-00148-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:trosos:v:17:y:2023:i:2:d:10.1007_s12626-023-00148-w
Ordering information: This journal article can be ordered from
https://www.springer ... ystems/journal/12626
DOI: 10.1007/s12626-023-00148-w
Access Statistics for this article
The Review of Socionetwork Strategies is currently edited by Katsutoshi Yada, Yasuharu Ukai and Marshall Van Alstyne
More articles in The Review of Socionetwork Strategies from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().