EconPapers    
Economics at your fingertips  
 

Integrated Management of a Canal Command in a River Delta using Multi-Objective Techniques

R. Nayak and R. Panda ()

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2001, vol. 15, issue 6, 383-401

Abstract: Multi-criteria or multi-objective decision-making is becoming increasingly popular as a decision support tool for natural resource management.Stakeholders as well as the planners can be involved in the decision making process, using this approach. This article deals with the use of multi-criteria (multi-objective) technique in solving some complex problems related to water resource management. Five objectives were considered in the study. The benefit of combining these objective functions with the decisionsupport tool is that the management of land and water resourcescan be made more effectively. Based on this concept, a methodology was developed through this study, for the water managers and decision-makers, to obtain a compromising solutionin terms of area allocated under different crops and the magnitude of farming system variables in a canal command area. This study was under taken in the Mahanadi Delta of India. Multi-objective techniques such as Sequential Linear Fuzzy Programming and Goal Programming were used for their simplicity in computation and flexibility in application. Using Fuzzy programming technique, the objective function values under benefit maximization, production maximization, investmentminimization, labour maximization and labour minimizationwere found to be 44.26 M INR, 8795 tonnes, 42.00 M INR and548 150 man-days, respectively. These results were found tobe quite compromising in nature. Goal programming technique wasalso used to arrive at a consensus in allocation of the resources. It was used to decide the best out of the eight alternative priorities. Results indicated that only five alternative goals (Goal1, Goal2, Goal3, Goal6 and Goal8) had distinct allocations while the other three alternatives (Goal4,Goal5 and Goal7) had allocations similar to either of the abovefive alternatives irrespective of their priority levels. Croppingintensity was found to be the maximum (238%) for two of thegoals (Goal6 and Goal7). Though the results of the study were forthe specific site, the multi-criteria techniques used and therecommendations evolved are of objective nature and are applicable at any location for decision-making. Copyright Kluwer Academic Publishers 2001

Keywords: cropping intensity; decision-maker; farmingsystem; fuzzy programming; goal programming; multi-criteria; objective function (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://hdl.handle.net/10.1023/A:1015593417769 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:15:y:2001:i:6:p:383-401

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1023/A:1015593417769

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:15:y:2001:i:6:p:383-401