EconPapers    
Economics at your fingertips  
 

Sensitivity of the Red River Basin Flood Protection System to Climate Variability and Change

Slobodan Simonovic () and Lanhai Li

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2004, vol. 18, issue 2, 89-110

Abstract: An original modeling framework for assessment of climate variation and change impacts on the performance of complex flood protection system has been implemented in the evaluation of the impact of climate variability and change on the reliability, vulnerability and resiliency of the Red River Basin flood protection system (Manitoba, Canada). The modeling framework allows for an evaluation of different climate change scenarios generated by the global climate models. Temperature and precipitation are used as the main factors affecting flood flow generation. System dynamics modeling approach proved to be of great value in the development of system performance assessment model. The most important impact of climate variability and change on hydrologic processes is reflected in the change of flood patterns: flood starting time, peak value and timing. The results show increase in the annual precipitation and the annual streamflow volume in the Red River basin under the future climate change scenarios. Most of the floods generated using three different climate models had an earlier starting time and peak time. The assessment of the performance of Red River flood protection system is based on the flood flows, the capacity of flood control structures and failure flow levels at different locations in the basin. In the Assiniboine River Basin, higher reliabilities at downstream locations are obtained indicating that Shellmouth reservoir plays an important role in reducing downstream flooding. However, a different trend was identified in the Red River Basin. The study results show that flood protection capacity of the Red River infrastructure is sufficient under low reliability criteria but may not be sufficient under high reliability criteria. Copyright Kluwer Academic Publishers 2004

Keywords: climate change impacts; flood protection system; reliability (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://hdl.handle.net/10.1023/B:WARM.0000024702.40031.b2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:18:y:2004:i:2:p:89-110

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1023/B:WARM.0000024702.40031.b2

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:18:y:2004:i:2:p:89-110