EconPapers    
Economics at your fingertips  
 

Determining Hydraulic Characteristics of Production Wells using Genetic Algorithm

Madan Jha, Gaurav Nanda and Manoj Samuel

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2004, vol. 18, issue 4, 353-377

Abstract: Proper well management requires the determination of characteristic hydraulic parameters of production wells such as well loss coefficient (C) and aquifer loss coefficient (B), which are conventionally determined by the graphical analysis ofstep-drawdowntest data. However, in the present study, the efficacy of a non-conventional optimization technique called Genetic Algorithm (GA), which ensures near-optimal or optimal solutions, is assessedin determining well parameters from step-drawdown test data. Computer programs were developed to optimize the well parametersby GA technique for two cases: (i) optimization of ‘B’ and ‘C’ only, and (ii) optimization of ‘B’, ‘C’ and ‘p’ (exponent) as well as to evaluate the well condition. The reliability and robustness of the developed computer programs were tested usingnine sets of published and unpublished step-drawdown data from varying hydrogeologic conditions. The well parameters obtained by the GA technique were compared with those obtained by the conventional graphical method in terms of root mean square error(RMSE) and visual inspection. It was revealed that the GA technique yielded more reliable well parameters with significantlylow values of RMSE for almost all the datasets, especially in caseof three-variable optimization. The optimal values of the parameters‘B’, ‘C’ and ‘p’ for the nine datasets were found to range from 0.382 to 2.292 min m -2 , 0.091 to 3.262, and 1.8 to 3.6, respectively. Because of a wide variation of ‘p’, the GA techniqueresulted in considerably different but dependable and robust well parameters as well as well specific capacity and well efficiency compared to the graphical method. The condition of three wells was found to be ‘good’, one well ‘bad’ and that of the remaining five wells ‘satisfactory’. The performance evaluation of the developed GA code indicated that a proper selection of generation number and population size is essential to ensure efficient optimization. Furthermore,a sensitivity analysis of the obtained optimal parameters demonstrated that the GA technique resulted in a unique set ofthe parameters for all the nine datasets. It is concluded thatthe GA technique is an effective and reliable numerical tool for determining the characteristic hydraulic parameters of production wells. Copyright Kluwer Academic Publishers 2004

Keywords: aquifer management; Genetic Algorithm (GA); numerical analysis; step-drawdown test; well parameters (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1023/B:WARM.0000048485.62254.1c (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:18:y:2004:i:4:p:353-377

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1023/B:WARM.0000048485.62254.1c

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:18:y:2004:i:4:p:353-377