EconPapers    
Economics at your fingertips  
 

Deriving Reservoir Refill Operating Rules by Using the Proposed DPNS Model

Pan Liu (), Shenglian Guo (), Lihua Xiong, Wei Li and Honggang Zhang

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2006, vol. 20, issue 3, 337-357

Abstract: The dynamic programming neural-network simplex (DPNS) model, which is aimed at making some improvements to the dynamic programming neural-network (DPN) model, is proposed and used to derive refill operating rules in reservoir planning and management. The DPNS model consists of three stages. First, the training data set (reservoir optimal sequences of releases) is searched by using the dynamic programming (DP) model to solve the deterministic refill operation problem. Second, with the training data set obtained, the artificial neural network (ANN) model representing the operating rules is trained through back-propagation (BP) algorithm. These two stages construct the standard DPN model. The third stage of DPNS is proposed to refine the operating rules through simulation-based optimization. By choosing maximum the hydropower generation as objective function, a nonlinear programming technique, Simplex method, is used to refine the final output of the DPN model. Both the DPNS and DPN models are used to derive operating rules for the real time refill operation of the Three Gorges Reservoir (TGR) for the year of 2007. It is shown that the DPNS model can improve not only the probability of refill but also the mean hydropower generation when compare with that of the DPN model. It's recommended that the objective function of ANN approach for deriving refill operating rules should maximize the yield or minimize the loss, which can be computed from reservoir simulation during the refill period, rather than to fit the optimal data set as well as possible. And the derivation of optimal or near-optimal operating rules can be carried out effectively and efficiently using the proposed DPNS model. Copyright Springer Science + Business Media, Inc. 2006

Keywords: artificial neural network; dynamic programming; operating rules; optimal operation; Three Gorges Reservoir (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-006-0322-7 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:20:y:2006:i:3:p:337-357

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-006-0322-7

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:20:y:2006:i:3:p:337-357