Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks
Abdüsselam Altunkaynak ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2007, vol. 21, issue 2, 399-408
Abstract:
Lake Van in eastern Turkey has been subject to water level rise during the last decade and, consequently, the low-lying areas along the shore are inundated, giving problems to local administrators, governmental officials, irrigation activities and to people's property. Therefore, forecasting water levels of the Lake has started to attract the attention of the researchers in the country. An attempt has been made to use artificial neural networks (ANN) for modeling the temporal change water levels of Lake Van. A back-propagation algorithm is used for training. The study indicated that neural networks can successfully model the complex relationship between the rainfall and consecutive water levels. Three different cases were considered with the network trained for different arrangements of input nodes, such as current and antecedent lake levels, rainfall amounts. All of the three models yields relatively close results to each other. The neural network model is simpler and more reliable than the conventional methods such as autoregressive (AR), moving average (MA), and autoregressive moving average with exogenous input (ARMAX) models. It is shown that the relative errors for these two different models, are below 10% which is acceptable for engineering studies. In this study, dynamic changes of the lake level are evaluated. In contrast to classical methods, ANNs do not require strict assumptions such as linearity, normality, homoscadacity etc. Copyright Springer Science+Business Media B.V. 2007
Keywords: Hydrologic budget; Lake level; Neural networks; Prediction (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-006-9022-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:21:y:2007:i:2:p:399-408
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-006-9022-6
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().