Potential assessment of the support vector regression technique in rainfall forecasting
Wei-Chiang Hong () and
Ping-Feng Pai ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2007, vol. 21, issue 2, 495-513
Abstract:
Forecasting and monitoring of rainfall values are increasingly important for decreasing economic loss caused by flash floods. Based on statistical learning theory, support vector regression (SVR) has been used to deal with forecasting problems. Performing structural risk minimization rather than minimizing the training errors, SVR algorithms have better generalization ability than the conventional artificial neural networks. The objective of this investigation is to examine the feasibility and applicability of SVR in forecasting volumes of rainfall during typhoon seasons. In addition, Simulated Annealing (SA) algorithms are employed to choose parameters of the SVR model. Subsequently, rainfall values during typhoon periods in Taiwan's Wu–Tu watershed are used to demonstrate the forecasting performance of the proposed model. The simulation results show that the proposed SVRSA model is a promising alternative in forecasting amounts of rainfall during typhoon seasons. Copyright Springer Science+Business Media B.V. 2007
Keywords: Rainfall forecasting; Support vector regression; Simulated annealing algorithms; Water resources (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-006-9026-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:21:y:2007:i:2:p:495-513
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-006-9026-2
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().