Geostatistically based management of arsenic contaminated ground water in shallow wells of Bangladesh
Faisal Hossain (),
Jason Hill and
Amvrossios Bagtzoglou
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2007, vol. 21, issue 7, 1245-1261
Abstract:
This paper investigates the effectiveness of geostatistical approaches, specifically ordinary kriging, for regional management of arsenic contaminated shallow ground water in Bangladesh. The arsenic database for reference comprised the nation-wide survey (of 3534 drinking wells) completed in 1999 by the British Geological Survey (BGS) in collaboration with the Department of Public Health Engineering (DPHE) of Bangladesh. A Monte Carlo (MC) framework was devised for selection of randomly-sampled networks of wells from this reference database. Each randomly sampled network was assumed an equi-probable exploratory field campaign designed commensurably with the requirements of rapidity and cost-effectiveness in a rural setting. In general, the kriging method was found to underestimate the arsenic concentration at non-sampled locations. This underestimation exceeded the safe limits at the Holocene region of Southcentral Bangladesh. The probability of successful prediction of safe wells for this region was found to be 72% (WHO safe limit – 10 ppb) and 78% (Bangladesh safe limit – 50 ppb). For the Pleistocene Northwestern region of Bangladesh, the safe well prediction probability was in the ranges of 90%–97%. The relatively more contaminated Holocene region in Southcentral Bangladesh, on other hand, was found more amenable to accurate geostatistical prediction of unsafe wells. Findings from this study exemplify that, while mainstream geostatistical approaches (e.g., ordinary kriging) may not provide the most accurate prediction of mean arsenic concentration at non-sampled locations, they can delineate an approximate strategy for management of arsenic contaminated shallow ground water if applied carefully. The kriging methodology is applied to a test case in Bangladesh; the approach, however, is general and is expected to have application in rural settings for other developing countries where arsenic contamination of ground water is also widespread (e.g., parts of India, Vietnam, Taiwan and Mexico). Copyright Springer Science + Business Media B.V. 2007
Keywords: Arsenic contamination; Management; Geostatistics; Ground water; Northwestern and Southcentral Bangladesh; Spatial patterns; Developing countries (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-006-9079-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:21:y:2007:i:7:p:1245-1261
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-006-9079-2
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().