Study of Flow Over Side Weirs Under Supercritical Conditions
K. Durga Rao () and
C. Pillai
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2008, vol. 22, issue 1, 143 pages
Abstract:
The present study focuses on the application of momentum principle to the analysis of spatially varied flow under supercritical conditions. Experimental studies were conducted on rectangular side weirs of different lengths and sill heights fitted in the test section of a rectangular aluminium channel that was built in a tilting flume. Measurements of discharges in the main channel and through the side weir were done separately. A pitot tube with direction finder was used to determine the velocities and angle of spill flow with the side weir. Depths of flow were measured both in longitudinal and transverse directions at regular intervals and their profiles were studied. Experiments were conducted with different test plates and flow conditions in the main channel. Coefficients of discharge were computed using momentum principle for different Froude numbers (between 1.5 and 3). The variation of discharge coefficient of the side weir as a function of Froude number was found to exhibit a non-linear relationship. Discharges over side weirs were computed using the computed coefficients of discharge for different Froude numbers and it was verified with the observed discharges. Coefficients of discharge were also computed using energy principle for different Froude numbers. Chi-square test was done between observed discharges over side weirs and discharges computed using momentum and energy principles, it was found that momentum principle is fitting better. Variation of the ratios of longitudinal components of velocity vector of spill flow to the mean velocity of the main channel flow at upstream end of the side weir with Froude number was found to exhibit a non-linear relationship. Variation of the discharge ratios of spill flow and main channel discharges with Froude number was also studied. Copyright Springer Science+Business Media, Inc. 2008
Keywords: open channel flow; side weirs; supercritical conditions; momentum principle; coefficient of discharge; Froude number; velocity ratio; discharge ratio (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-007-9153-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:22:y:2008:i:1:p:131-143
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-007-9153-4
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().