EconPapers    
Economics at your fingertips  
 

Prediction of Hydropower Energy Using ANN for the Feasibility of Hydropower Plant Installation to an Existing Irrigation Dam

Murat Cobaner (), Tefaruk Haktanir and Ozgur Kisi

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2008, vol. 22, issue 6, 757-774

Abstract: Recently, artificial neural networks (ANNs) have been used successfully for many engineering problems. This paper presents a practical way of predicting the hydropower energy potential using ANNs for the feasibility of adding a hydropower plant unit to an existing irrigation dam. Because the cost of energy has risen considerably in recent decades, addition of a suitable capacity hydropower plant (HPP) to the end of the pressure conduit of an existing irrigation dam may become economically feasible. First, a computer program to realistically calculate all local, frictional, and total head losses (THL) throughout any pressure conduit in detail is coded, whose end-product enables determination of the C coefficient of the highly significant model for total losses as: THL = C·Q 2 . Next, a computer program to determine the hydroelectric energies produced at monthly periods, the present worth (PW) of their monetary gains, and the annual average energy by a HPP is coded, which utilizes this simple but precise model for quantification of total energy losses from the inlet to the turbine. Inflows series, irrigation water requirements, evaporation rates, turbine running time ratios, and the C coefficient are the input data of this program. This model is applied to randomly chosen 10 irrigation dams in Turkey, and the selected input variables are gross head and reservoir capacity of the dams, recorded monthly inflows and irrigation releases for the prediction of hydropower energy. A single hidden-layered feed forward neural network using Levenberg–Marquardt algorithm is developed with a detailed analysis of model design of those factors affecting successful implementation of the model, which provides for a realistic prediction of the annual average hydroelectric energy from an irrigation dam in a quick-cut manner without the excessive operation studies needed conventionally. Estimation of the average annual energy with the help of this model should be useful for reconnaissance studies. Copyright Springer Science+Business Media B.V. 2008

Keywords: Hydroelectric energy; Dam operation; Feasibility of hydropower plant; Prediction of hydropower energy; Artificial neural networks (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-007-9190-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:22:y:2008:i:6:p:757-774

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-007-9190-z

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:22:y:2008:i:6:p:757-774