Study of Drawdown–Drain Discharge Relationship and its Application in Design of Cost Effective Subsurface Drainage System in Mugogo Swamp, Busogo, Rwanda
Narayanan Kannan ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2008, vol. 22, issue 8, 1113-1125
Abstract:
Mostly the swamps in Rwanda are surrounded by volcanic hills with small streams flowing to discharge runoff and seepage water. Mugogo swamp is located in Busogo sector, Musanze district, North province. Total area of the swamp is approximately 50 ha. The swamp is surrounded by hills and elevated volcanic rocky terrains. Potato is the main crop cultivated in the swamp. The average production rate of potato is 7 MT/ha which is very low compared to 12 MT/ha in well drained areas. During rainy season seepage water and runoff water from the surrounding hills cause the waterlogged condition of the swamp and affecting the potato cultivation and land productivity. The remedial measure for this swamp is to divert separately the runoff and seepage water from surrounding catchment area and then remove the recharge water by pumping through a system of subsurface drains. Hydraulic head–drain discharge relationship can be fitted with quadratic equation. Equivalent drainable porosity and equivalent hydraulic conductivity are determined as 0.105 m/day and 0.34% respectively for drain depth of 40 cm from soil surface. Effective hydraulic conductivity in the soil profile shows that its average value in the top 15 cm of soil layer is 0.17 m/day and that in the remaining depth up to impermeable layer is 0.015 m/day. Third degree polynomial expressions are made for Head–hydraulic conductivity and head–drainable porosity relationships. The nonlinear relation of hydraulic conductivity and drainable porosity with drawdown shows that the proximity of Kinoni stream does not affect drainage parameters of the area because of less seepage from the stream. The study also reveals that adoption of 7 m drain spacing is very less if crop parameter is not considered and will result higher drain cost. Drainage coefficient of 5 mm/day is arrived considering the rainfall distribution, infiltration rate of soil, allowable water logging tolerance of potato crop. Required drain spacings are calculated for different drainage coefficients of 1, 2, 3, 4 and 5 mm/day under different drawdown conditions to plot subsurface drainage characteristic curves of the swamp. These curves are useful to directly read the drain spacing and drain depth for the required drainage coefficient without going for tedious calculations. Cost analysis shows that the ratio of drain spacing to drain depth can be a decisive factor to select best combination of drain depth and drain spacing. For drainage coefficient of 5 mm/day, optimum drain spacing-depth ratio is found as 7.2 with a cost of 0.689 million Frw/ha. For different drainage coefficients in the swamp, the drain depth of 1.5 m is crucial and optimum cost occurs at this depth. It is also found that any increase in drawdown beyond the drawdown at critical drain depth will not reduce the cost significantly. Copyright Springer Science+Business Media B.V. 2008
Keywords: Agriculture; Subsurface drainage; Hydraulic conductivity; Drainable porosity; Drain spacing; Drain cost (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-007-9215-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:22:y:2008:i:8:p:1113-1125
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-007-9215-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().