EconPapers    
Economics at your fingertips  
 

Estimation of Clark’s Instantaneous Unit Hydrograph Parameters and Development of Direct Surface Runoff Hydrograph

Muhammad Ahmad (), Abdul Ghumman () and Sajjad Ahmad ()

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2009, vol. 23, issue 12, 2417-2435

Abstract: We present a method to estimate Time of Concentration (T c ) and Storage Coefficient (R) to develop Clark’s Instantaneous Unit Hydrograph (CIUH). T c is estimated from Time Area Diagram of the catchment and R is determined using optimization approach based on Downhill Simplex technique (code written in FORTRAN). Four different objective functions are used in optimization to determine R. The sum of least squares objective function is used in a novel way by relating it to slope of a linear regression best fit line drawn between observed and simulated peak discharge values to find R. Physical parameters (delineation, land slope, stream lengths and associated drainage areas) of the catchment are derived from SPOT satellite imageries of the basin using ERDAS: Arc GIS is used for geographic data processing. Ten randomly selected rainfall–runoff events are used for calibration and five for validation. Using CIUH, a Direct surface runoff hydrograph (DSRH) is developed. Kaha catchment (5,598 km 2 ), part of Indus river system, located in semi-arid region of Pakistan and dominated by hill torrent flows is used to demonstrate the applicability of proposed approach. Model results during validation are very good with model efficiency of more than 95% and root mean square error of less than 6%. Impact of variation in model parameters T c and R on DSRH is investigated. It is identified that DSRH is more sensitive to R compared to T c . Relatively equal values of R and T c reveal that shape of DSRH for a large catchment depends on both runoff diffusion and translation flow effects. The runoff diffusion effect is found to be dominant. Copyright Springer Science+Business Media B.V. 2009

Keywords: Time of concentration; Storage coefficient; Clark’s instantaneous unit hydrograph; Direct surface runoff hydrograph; Hydrograph parameter estimation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-008-9388-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:23:y:2009:i:12:p:2417-2435

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-008-9388-8

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:23:y:2009:i:12:p:2417-2435