Reservoir Inflow Modeling Using Temporal Neural Networks with Forgetting Factor Approach
Saman Razavi and
Shahab Araghinejad ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2009, vol. 23, issue 1, 39-55
Abstract:
In this paper, a recursive training procedure with forgetting factor is proposed for on-line calibration of temporal neural networks. The forgetting factor discounts old measurements through an on-line model calibration. The forgetting factor approach enables the recursive algorithm to reduce the effect of the older error data by multiplying the error data by a discounting factor. The proposed procedure is used to calibrate a temporal neural network for reservoir inflow modeling. The mean monthly inflow of the Karoon-III reservoir dam in the south-western part of Iran is used to test the performance of the proposed approach. An autoregressive moving average (ARMA) model is also applied to the same data. The temporal neural network, which is trained with the proposed approach, has shown a significant improvement in the forecast accuracy in comparison with the network trained by the conventional method. It is also demonstrated that the neural network trained with forgetting factor results in better forecasts compared to the statistical ARMA model, which has been calibrated through this approach. Copyright Springer Science+Business Media B.V. 2009
Keywords: Temporal neural networks; Forgetting factor; Forecast; ARMA (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-008-9263-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:23:y:2009:i:1:p:39-55
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-008-9263-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().