Improved Reservoir Operation Using Hybrid Genetic Algorithm and Neurofuzzy Computing
Panuwat Pinthong (),
Ashim Das Gupta,
Mukand Babel and
Sutat Weesakul
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2009, vol. 23, issue 4, 697-720
Abstract:
A hybrid genetic and neurofuzzy computing algorithm was developed to enhance efficiency of water management for a multipurpose reservoir system. The genetic algorithm was applied to search for the optimal input combination of a neurofuzzy system. The optimal model structure is modified using the selection index (SI) criterion expressed as the weighted combination of normalized values of root mean square error (RMSE) and maximum absolute percentage of error (MAPE). The hybrid learning algorithm combines the gradient descent and the least-square methods to train the genetic-based neurofuzzy network by adjusting the parameters of the neurofuzzy system. The applicability of this modeling approach is demonstrated through an operational study of the Pasak Jolasid Reservoir in Pasak River Basin, Thailand. The optimal reservoir releases are determined based on the reservoir inflow, storage stage, sideflow, diversion flow from the adjoining basin, and the water demand. Reliability, vulnerability and resiliency are used as indicators to evaluate the model performance in meeting objectives of satisfying water demand and maximizing flood prevention. Results of the performance evaluation indicate that the releases predicted by the genetic-based neurofuzzy model gave higher reliability for water supply and flood protection compared to the actual operation, the releases based on simulation following the current rule curve, and the predicted releases based on other approaches such as the fuzzy rule-based model and the neurofuzzy model. Also the predicted releases based on the newly developed approach result in the lowest amount of deficit and spill indicating that the developed modeling approach would assist in improved operation of Pasak Jolasid Reservoir. Copyright Springer Science+Business Media B.V. 2009
Keywords: Genetic algorithms; Fuzzy logic; Neurofuzzy computing; Reservoir operation; Decision-making model; Pasak River Basin (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-008-9295-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:23:y:2009:i:4:p:697-720
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-008-9295-z
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().