Comparison of Policies Derived from Stochastic Dynamic Programming and Genetic Algorithm Models
V. Jothiprakash () and
Ganesan Shanthi
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2009, vol. 23, issue 8, 1563-1580
Abstract:
A comprehensive Genetic Algorithm (GA) model has been developed and applied to derive optimal operational strategies of a multi-purpose reservoir, namely Perunchani Reservoir, in Kodaiyar Basin in Tamil Nadu, India. Most of the water resources problem involves uncertainty, in order to see that the GA model takes care of uncertainty in the input variable, the result of the GA model is compared with the performance of a detailed Stochastic Dynamic Programming (SDP) model. The SDP models are well established and proved that it takes care of uncertainty in-terms of either implicit or explicit approach. In the present study, the objective function of the models is set to minimize the annual sum of squared deviation from desired target release and desired storage volume. In the SDP model the optimal policies are derived by varying the state variables from 3 to 9 representative class intervals, and then the cases are evaluated for their performance using a simulation model for longer length of inflow data, generated using a Thomas–Fiering model. From the performance of the SDP model policies, it is found that the system encountered irrigation deficit, whereas GA model satisfied the demand to a greater extent. The sensitivity analysis of the GA model in selecting optimal population, optimal crossover probability and the optimal number of generations showed the values of 150, 0.76 and 175 respectively. On comparing the performance of SDP model policy with GA model, it is found that GA model has resulted in a lesser irrigation deficit. Thus based on the present case study, it may be concluded that the GA model performs better than the SDP model. Copyright Springer Science+Business Media B.V. 2009
Keywords: Stochastic dynamic programming; Genetic algorithm; Multi-purpose reservoir operation; Simulation; Synthetic stream flow generation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-008-9341-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:23:y:2009:i:8:p:1563-1580
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-008-9341-x
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().