EconPapers    
Economics at your fingertips  
 

Daily Outflow Prediction by Multi Layer Perceptron with Logistic Sigmoid and Tangent Sigmoid Activation Functions

Mehdi Rezaeian Zadeh (), Seifollah Amin (), Davar Khalili and Vijay Singh

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2010, vol. 24, issue 11, 2673-2688

Abstract: This paper discusses the use of artificial neural network (ANN) models for predicting daily flows from Khosrow Shirin watershed located in the northwest part of Fars province in Iran. A Multi-Layer Perceptron (MLP) neural network was developed using five input vectors leading to five ANN models: MLP1, MLP2, MLP3, MLP4, and MLP5. Two activation functions were used and they were logistic sigmoid and tangent sigmoid. The MLP_Levenberg–Marquardt (LM) algorithm was used for the training of ANN models. A 5-year data record, selected randomly, was used for ANN training and testing. The predicted outflow showed that the tangent sigmoid activation function performed better than did the logistic sigmoid activation function. The values of R 2 and RMSE for MLP4 with the tangent sigmoid activation function for the validation period were equal to 0.89 and 1.7 m 3 /s, respectively. Appropriate input vectors for MLPs were determined by correlation analysis. It was found that antecedent precipitation and discharge with 1 day time lag as an input vector best predicted daily flows. Also, comparison of MLPs showed that an increase in input data was not always useful. Copyright Springer Science+Business Media B.V. 2010

Keywords: ANN models; Daily outflow; Randomized data; Activation functions; Khosro Shirin watershed; Iran (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-009-9573-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:24:y:2010:i:11:p:2673-2688

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-009-9573-4

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:24:y:2010:i:11:p:2673-2688