EconPapers    
Economics at your fingertips  
 

Estimation of a Unique Pair of Nash Model Parameters: An Optimization Approach

Muhammad Ahmad, Abdul Ghumman, Sajjad Ahmad () and Hashim Hashmi

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2010, vol. 24, issue 12, 2989 pages

Abstract: Water resources planning and management requires hydrologic models to estimate runoff from a catchment. For catchments with limited data, the choice of model and identification of its parameters is very important for development of a direct runoff hydrograph. A method is presented to determine a unique pair of hydrologic parameters of the Nash Model, number of linear cascade (n) and storage coefficient (k), using optimization based on Downhill Simplex technique. In this study physical parameters of the catchment are derived from (SPOT) satellite imageries of the basin using ERDAS software. Four different objective functions of varying complexity are tested to find the best solution. Weighted root mean square error (RMSE) and Model Efficiency (Nash-Sutcliffe coefficient) are used to evaluate the model performance. Using the NASH model, a direct surface runoff hydrograph (DSRH) is developed. Kaha catchment is part of Indus river system and is located in the semi-arid region of Pakistan. This catchment is dominated by hill torrent flows and is used in this work to demonstrate the applicability of the proposed method. Ten randomly selected rainfall-runoff events are used for calibration and five events are used for validation. Model results during validation are very promising with model efficiency exceeding 93% and error in peak discharge under 8%. The sensitivity of the Nash model output in response to variation in hydrologic parameters n and k is also investigated. When evaluating the hydrologic response of large catchments, model output is more sensitive to n as compared to k indicating that the runoff diffusion phenomenon is dominant compared to translation flow effects. Copyright Springer Science+Business Media B.V. 2010

Keywords: Rainfall-runoff; Storage coefficient; Nash model; Runoff hydrograph; Hydrologic parameter (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-010-9590-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:24:y:2010:i:12:p:2971-2989

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-010-9590-3

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:24:y:2010:i:12:p:2971-2989