EconPapers    
Economics at your fingertips  
 

Feasibility Assessment of Data-Driven Models in Predicting Pollution Trends of Omerli Lake, Turkey

Atilla Akkoyunlu () and Muhammed Akiner ()

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2010, vol. 24, issue 13, 3419-3436

Abstract: Data-driven models are commonly used in a wide range of disciplines, including environmental engineering. To analyze Omerli Lake’s historic water pollution status, this study monitors data for dissolved oxygen, 5-day biochemical oxygen demand, ammonium nitrogen, nitrite nitrogen, nitrate nitrogen, and ortho phosphate. The quality of the lake water is assessed based on measurements of dissolved oxygen. The collected data are analyzed using regression analysis and artificial neural network models. The main goal of this paper is to reveal the best applicable data-driven model in order to gain forward-looking information regarding the dissolved oxygen level of the lake using other pollution parameters. In order to ascertain eutrophic status, total phosphorus loads for each year are represented on a Vollenweider diagram. Results designate an increasing risk of eutrophication for Omerli Lake in recent years. Results of the data-driven models show that the artificial neural networks model constitutes the best relationship between the dissolved oxygen and other parameters. Copyright Springer Science+Business Media B.V. 2010

Keywords: Omerli Lake; Artificial neural network; Regression analysis; Water pollution; Eutrophic status (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-010-9613-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:24:y:2010:i:13:p:3419-3436

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-010-9613-0

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:24:y:2010:i:13:p:3419-3436