Application of SEBAL and Markov Models for Future Stream Flow Simulation Through Remote Sensing
Chih-Da Wu,
Chi-Chuan Cheng (),
Hann-Chung Lo and
Yeong-Keung Chen
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2010, vol. 24, issue 14, 3773-3797
Abstract:
Watershed hydrology, including the volumes of stream flow is widely considered to be influenced by global climate change. Traditional studies using the (GWLF) model to estimate stream flows have relied on evapotranspiration cover coefficient (Kc) obtained from published references. Other factors, such as future land-use status and evapotranspiration (ET) change, are usually not considered. This study aims to improve on traditional studies by including remote sensing techniques to estimate the Kc, as well as integrating the SEBAL model, the CGCM1 model, and the Markov model to predict land-use and ET changes. The chosen study area was in the north of Taiwan. The processes include land-use classification using hybrid approach and Landsat-5 TM images, a comparison of stream flow simulations using the GWLF model with two Kc values derived from remote sensing and traditional methods, and finally the prediction of future land-use and Kc parameters for assessing the effect of land-use change and ET change. The results indicated that the study area was classified into seven land-use types with 89.09% classification accuracy. The stream flows simulated by two estimated Kcs were different, and the simulated stream flows using the remote sensing approach presented more accurate hydrological characteristics than a traditional approach. In addition, the consideration of land-use change and ET change indeed affected the predicted stream flows under climate change conditions. These results imply that the integration of remote sensing, the SEBAL model, the CGCM1 model, and the Markov model is a feasible scheme to predict future land-use, ET change, and stream flow. Therefore, these models will improve future studies of predictions in water resource management and global environmental change. Copyright Springer Science+Business Media B.V. 2010
Keywords: SEBAL model; Markov model; Evapotranspiration cover coefficient; Climate change; Land-use change; Stream flow simulation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-010-9633-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:24:y:2010:i:14:p:3773-3797
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-010-9633-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().