Development and Integration of Sub-hourly Rainfall–Runoff Modeling Capability Within a Watershed Model
Jaehak Jeong (),
Narayanan Kannan (),
Jeff Arnold (),
Roger Glick (),
Leila Gosselink () and
Raghavan Srinivasan ()
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2010, vol. 24, issue 15, 4505-4527
Abstract:
Increasing urbanization changes runoff patterns to be flashy and instantaneous with decreased base flow. A model with the ability to simulate sub-daily rainfall–runoff processes and continuous simulation capability is required to realistically capture the long-term flow and water quality trends in watersheds that are experiencing urbanization. Soil and Water Assessment Tool (SWAT) has been widely used in hydrologic and nonpoint sources modeling. However, its subdaily modeling capability is limited to hourly flow simulation. This paper presents the development and testing of a sub-hourly rainfall–runoff model in SWAT. SWAT algorithms for infiltration, surface runoff, flow routing, impoundments, and lagging of surface runoff have been modified to allow flow simulations with a sub-hourly time interval as small as one minute. Evapotranspiration, soil water contents, base flow, and lateral flow are estimated on a daily basis and distributed equally for each time step. The sub-hourly routines were tested on a 1.9 km 2 watershed (70% undeveloped) near Lost Creek in Austin Texas USA. Sensitivity analysis shows that channel flow parameters are more sensitive in sub-hourly simulations (Δt = 15 min) while base flow parameters are more important in daily simulations (Δt = 1 day). A case study shows that the sub-hourly SWAT model reasonably reproduces stream flow hydrograph under multiple storm events. Calibrated stream flow for 1 year period with 15 min simulation (R 2 = 0.93) shows better performance compared to daily simulation for the same period (R 2 = 0.72). A statistical analysis shows that the improvement in the model performance with sub-hourly time interval is mostly due to the improvement in predicting high flows. The sub-hourly version of SWAT is a promising tool for hydrology and non-point source pollution assessment studies, although more development on water quality modeling is still needed. Copyright Springer Science+Business Media B.V. 2010
Keywords: SWAT; Rainfall–runoff modeling; Watershed modeling; Subdaily simulation; Sub-hourly simulation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11269-010-9670-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:24:y:2010:i:15:p:4505-4527
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-010-9670-4
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().